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11.1 INTRODUCTION

Collecting fisheries data requires extensive time and financial commitments. Given this
high level of investment by management agencies and individual biologists, data storage,
summarization, and analysis should be a high priority to ensure that the integrity and ac-
cessibility of collected information are maximized over time. Arguably, the most important
aspect of sampling is completing an appropriate and thorough analysis of collected data.
Standard sampling procedures help ensure that data analysis and database management are
appropriate and efficient, but even when data are collected using standardized methods,
data scructure will vary among species and systems making standardized analyses difficult
and sometimes impossible. Different agencies may also have different database manage-
ment needs and structures, which can influence how data are stored and later accessed for
analysis. The purpose of this chapter is to provide an overview of data summarization and
analysis techniques, sample-size estimators, and principles of database management. When-
ever appropriate, we guide readers to more detailed sources of information because many of
these topics have been discussed extensively in the fisheries literature.

11.2 DATA ANALYSIS

Fisheries scientists typically collect large amounts of data during standard sampling sur-
veys, and properly interpreting these data is necessary for making sound management
decisions. Data analysis is often hierarchical in that some analyses focus on the estimation
of simple summary statistics (e.g., mean, variance), while others rely on inferential statis-
tical tests or modeling. Although fisheries data can be summarized using a variety of ap-
- proaches, a few techniques have become standard in the profession, the most common of
which are discussed in this chapter. Many texts are available on statistical techniques for
fisheries data (e.g., Everhart et al. 1975; Jongman et al. 1995; Murphy and Willis 1996;
Guy and Brown 2007), so these efforts are not reproduced in this chapter. Rather, we
provide the most current references for analyzing fisheries data and encourage biologists
to use these resources for more detailed presentations of analytical methods for fisheries
data. In particular, we recommend Brown and Austen (1996) as a starting point for read-
ers not familiar with the issues and idiosyncrasies of analyzing such data.
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11.2.1 Abundance

Estimating the abundance of fish in a system is probably one of the most common objec-
tives of sampling because estimates of fish abundance are critical for assessing management
activities. Abundance estimates can be categorized as those focusing on either absolute or
relative abundance. Absolute abundance refers to the total number of organisms in a system
(i.e., density or population estimates), whereas relative abundance provides an index (e.g.,
catch per unit effort [CPUE]) of absolute abundance. Relative abundance should not be
confused with relative species composition, which is the proportional (percentage) numeri-
cal or gravimetric abundance of a species within a collection of species.

Various techniques are used to estimate absolute abundance of fish in different
systems, and they vary from simple techniques that can be executed using a pocket cal-
culator to complex techniques requiring a high level of statistical expertise. Techniques
used to estimate population density include hydroacoustic, mark—recapture, and deple-
tion techniques. Broad overviews of these techniques can be found in Everhart et al.
(1975), Van Den Avyle and Hayward (1999), and Pine et al. (2003). Detailed discus-
sions can be found in Williams et al. (2002) and Hayes et al. (2007).

Estimating population density is time-consuming and expensive; consequently, it is
often excluded from standard fish sampling protocols in lakes, ponds, and larger riv-
ers. Multiple-pass depletion methods are commonly used in small streams for estimating
density, but the use of these methods varies depending on the species of interest and the
sampling goals. Instead, CPUE is often used as an index of density. Catch per unit ef-
fort is simply the number of fish sampled per unit of effort and is assumed to be directly
proportional to density (Hubert and Fabrizio 2007). Although the concept and estima-
tion of CPUE appears simple, estimating CPUE has numerous assumptions that must be
considered. Using CPUE as a measure of fish abundance assumes that changes in CPUE
relect a proportional change in abundance, which is often not the case. Additionally, a
common question is whether or not different gears can be combined to provide an esti-
mate of CPUE (e.g., fyke nets and gill nets). Given differences in catchability (i.e., prob-
ability of catching an individual fish in one unit of effort; Van Den Avyle and Hayward
1999) associated with different gear—species combinations, sampling gears should remain
separate when estimating CPUE. We suggest that managers choose the gear most appro-
priate for the target species and system (Chapters 2-10).

Another common question focuses on the computation of CPUE. Twwo methods can
be used. First, the total number of fish can be divided by the total amount of effort. Sec-
ond, CPUE can be estimated for each sampling unit (e.g., net set, electrofishing transect)
and then averaged. If effort is equal among samples, then the estimate of the mean will
be equal for both methods. However, differences arise when effort varies among samples.
Suppose that three electrofishing runs are conducted and the catches are as shown in
Table 11.1. In both scenarios, the total number of fish is 2,310 and total effort is 90 min.
If CPUE is estimated using totals, then CPUE is 25.7 fish per minute in both scenarios.
However, if CPUE is estimated for cach run and averaged, different results are obtained,
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Table 11.1 Two scenarios of estimating catch per unit efforc (CPUE = catch per unit effort [num-
ber of fish per minute]) from three hypothetical electrofishing runs.

Scenario A Scenario B
Run Efforce (min) Number of fish CPUE Number of fish CPUE
1| 15 2,250 150.0 45 3.0
30 15 0.5 15 0.5
3 45 45 1.0 2,250 50.0

with a mean CPUE of 50.5 fish per minute for scenario A and 17.8 fish per minute for
scenario B. Differences between the two techniques are particularly dramatic when no
fish are sampled in a series of nets or electrofishing runs. The question then becomes
which estimate is correct. Using total catch and total effort, the estimate is simply overall
CPUE, whereas the other procedure yields a mean CPUE and associated variance. Biolo-
gists should use mean CPUE. Such estimates are necessary when inferential scatistical
analyses or sample-size estimation procedures are conducted. Hubert and Fabrizio (2007)
provided a detailed discussion of issues, such as basic assumptions and statistical tech-
niques associated with CPUE data. In addition, biologists should follow standard statisti-
cal texts (e.g., Scheaffer et al. 1996) when estimating parameters (e.g., means, variance)
from samples collected using designs other than simple random sampling (e.g., stratified
or systematic sampling designs; Hansen et al. 2007).

11.2.2 Length-Frequency Distributions

Length—frequency distributions (i.e., plots of frequency, numbers, or catch rates as a
function of fish length; Brown and Austen 1996; Neumann and Allen 2007) are used
in most fish population evaluations. Communicating the results of a length-frequency
distribution to other managers is difficult unless some type of summarization procedure
is used. Techniques have been developed to summarize length-frequency distributions
(e.g., Bonar 2002) and the most common technique is to use a length-structure index,
specifically proportional size distribution (PSD; formerly proportional stock density, Guy
et al. 2007) and PSDs for various length categories (formerly relative stock densities; see
Willis et al. 1993; Anderson and Neumann 1996; and Neumann and Allen 2007 for
additional information on length-structure indices). Length-structure indices quantify
length-frequency histograms and promote quick and eflicient communication among
fisheries professionals (Willis et al. 1993; Anderson and Neumann 1996). Length-struc-
ture indices are also used as targets for management activities or as a measure of change
in fish populations resulting from anthropogenic disturbance or management activities
(e.g., Bauer 2002; Michaletz 2000).

Similar to other fisheries data (e.g., CPUE), length-frequency and length-structure
data have a number of analytical issues. Detailed descriptions of those issues and statisti-
cal methods associated with analyzing length-frequency data are provided in Anderson
and Neumann (1996), and Neumann and Allen (2007).
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11.2.3 Body Condition

Body condition can be measured using numerous techniques, including physiological
measures of lipid content or stress hormones (e.g., Wedemeyer et al. 1990; Simpkins et
al. 2003) and indices based on length—weight relationships (e.g., Blackwell et al. 2000).
Physiological analyses are costly and require sophisticated equipment and high levels of
technical expertise. However, for most routine fisheries work, length—weight data pro-
vide readily available sources of information on fish condition (Anderson and Neumann
1996; Blackwell et al. 2000). Although a number of techniques have been proposed, rela-
tive condition (K ) and relative weight (W) are the most common indices. Relative con-
dition and relative weight are obtained using species-specific length—weight relationships
that include fish from a small region (i.e., K ) or from across the entire distribution of the
species (i.e., W). Whenever possible, 14 should be used to estimate condition. Although
W is commonly used in the fisheries profession, its utility and the derivation of standard
weight equations, as well as alternative methodologies, have been the focus of extensive
discussion (e.g., Cone 1989; Murphy and Willis 1992; Gerow et al. 2005). Despite the
issues surrounding condition indices, they provide standardized methods of summarizing
length—weight data that are efficient and can be easily communicated among biologists
in different geographic locations. Statistical analysis of condition indices is discussed in
Brenden et al. (2003) and Pope and Kruse (2007).

11.2.4 Diversity Indices

Although population-level measures will remain a focus of most fisheries professionals, an
increased focus on the conservation of native species and their associated fish assemblages
is emerging (e.g., Clarkson et al. 2005). A number of summarization and analysis tech-
niques are available, and in-depth discussions are provided in many ecology texts. Sum-
marization techniques have focused on species richness and diversity indices (e.g., Wolda
1981; Magurran 2004). Statistical analyses of fish assemblages are often conducted using
multivariate analyses, such as cluster analysis or ordination techniques (e.g., Jongman et
al. 1995). Additional information on the summarization and analysis of assemblage data
can be found in Wolda (1981), Jongman et al. (1995), and Magurran (2004). Crowder
(1990) and Kwak and Peterson (2007) provided excellent discussions of issues and statis-
tical techniques to quantify community metrics in fish assemblages.

11.3 SAMPLE-SIZE ESTIMATION

Estimating the number of samples required to detect changes in fish population char-
acteristics is important for ensuring efficient use of time and financial resources. For
example, fisheries biologists often need to determine whether a management action has
resulted in a change in a fish population between two points in time. Information on the
number of samples required before and after the management action provides insight on
whether or not a change can be detected at some level of sampling effort. Sample-size esti-
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mates also provide guidance when establishing standardized sampling protocols and should
be considered along with other aspects of study design during the planning process (e.g.,
fixed versus random samples, simple random versus stratified random sampling; Hansen et
al. 2007). All sample-size estimation procedures utilize paramerer estimates (e.g., variance,
mean) specific to a particular system. If existing data are available, those data should be
used to estimate the number of samples required to meet management objectives. If data
are unavailable, samples should be collected using standard methods to obtain the necessary
parameter estimates, and resulting estimates can then be used to calculate required sample
sizes. The utility of sample-size estimates is often questioned because estimates are often
beyond the sampling capabilities of most biologists. However, sample-size estimates are
useful because they provide biologists with realistic expectations of what differences may be
detected with a reasonable amount of effort. For example, it sampling variability is high,
fishery managers may only be able to detect a +50% difference in population metrics.

A number of sample-size estimators are available to fisheries biologists, but we discuss
those most commonly used. These estimators can be categorized based on their level of
complexity and ease of use. In general, more complex estimators are more difficult to use
but provide more realistic estimates of needed sample sizes.

11.3.1 Rules of Thumb

The following sections provide fisheries scientists with different techniques for estimart-
ing needed sample sizes, all of which require some level of mathemartical computation.
While these estimators are useful, summary tables and rules of thumb are commonly
used to guide sampling efforts. Summary tables and rules of thumb are particularly useful
when estimators are highly complex or when research has not yet established clear guide-
lines for sample-size requirements. The following discussion focuses on length-structure,
body-condition, and growth data. Although these are presented as general guidelines, we
believe that scientists should strive to use more complex (and realistic) sample-size estima-
tors and to adhere to the tenet that “more dara are always better.”

11.3.1.1 Length-structure indices

Describing the length-frequency distribution of samples from fish populations is a pri-
mary goal of standardized sampling. Anderson and Neumann (1996) suggested thar at
least 100 stock-length fish should be measured to describe length-frequency distribu-
tions. However, these guidelines and others (e.g., Gilliland 1987) are largely based on
professional judgment rather than statistical estimation. Gustafson (1988) provided a
series of tables that can be used to estimate sample-size requirements. Specifically, the
tables provide 80% or 95% confidence intervals (Cls) for length-structure index esti-
mates (e.g., PSD) at various sample sizes. If an estimate of PSD (or PSD-P, PSD-M,
etc.) is obtained, biologists can then use the table to gain insight on the number of
stock-length fish required to obtain some level of confidence. Alternatively, Gustafson
(1988) provided an equation that biologists can use to develop their own tables for dif-
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ferent levels of statistical confidence. The tables provided by Gustafson (1988) focus on
different levels of precision (i.e., number of samples and associated Cls for a sample) and
do not focus on the number of samples required to detect a statistical difference between
PSDs in different systems or through time in a single system. In response to these limita-
tions, Miranda (1993) developed equations and tables that allow biologists to estimate
the number of samples necessary to detect differences in length-structure indices. More
recent research using resampling techniques (see Section 11.3.4) have provided addi-
tional insight on required sample sizes (Vokoun et al. 2001; Miranda 2007). Results of
these studies suggest that required sample sizes associated with examining length-struc-
ture indices and length-frequency distributions may be as low as 75 fish and exceed 400
fish depending on the goals of data analysis and the species of interest. Thus, tables in
Gustafson (1988) and Miranda (1993), or the numbers provided in Vokoun et al. (2001)
and Miranda (2007), can be used depending on the goals and objectives of sampling.
For the most basic length-structure index, PSD, a minimum sample size of 125 would
be appropriate in most instances. However, we recommend measuring at least 400 fish to
maximize the flexibility of what can be accomplished with the data, including compari-
son of more detailed size-structure descriptors like length frequency.

11.3.1.2 Body condition indices

Although a number of indices are available for describing the body condition of fishes, we
focus this discussion on W due to its popularity and widespread use by biologists within
natural resource agencies (Blackwell et al. 2000). The first sample size recommendation
for describing W was made by Wege and Anderson (1978) who suggested that, in lakes
with densities greater than 50 largemouth bass/ha, a sample of 10-20 largemouth bass was
required to estimate W within three units of true W with 90% confidence. They further
recommended that a sample of more than 20 largemouth bass was required in lakes with
less than 50 largemouth bass/ha. More recently, Brown and Murphy (1991) provided an
equation to estimate the 95% CI for mean W values that can then be used to construct
tables similar to those provided by Gustafson (1988) and Miranda (1993) for length-struc-
ture indices. Unfortunately, few studies have examined sample-size requirements for mean
W estimates, likely due to statistical issues associated with the calculation and distribution
of W (Brenden et al. 2003; but see Hyatt and Hubert 2001). Scientists should measure and
weigh at least 100 fish, greater than the minimum length for application of standard weight
equations for a given species. If data are available to provide adequate estimates of variance,
empirical data should be used to construct tables of Cls using equations provided by Brown
and Murphy (1991) to help guide sampling.

11.3.1.3 Growth

Similar to length distributions and body condition, information on age and growth can
help answer a number of management questions. Unfortunately, little guidance is avail-
able on the number of samples required for the estimation of population statistics com-
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monly derived from age and growth information (e.g., mortality rates, growth models,
mean length at age, mean back-calculated lengths). Until such studies are conducted, a
common rule of thumb is to subsample at least five fish per centimeter-length-group for
management purposes and at least 10 fish per centimeter-length-group for research proj-
ects. When data are used to evaluate population dynamics associated with age-structure
data, the subsample should be extrapolated to the entire sample using an age-length key
(DeVries and Frie 1996; Bettoli and Miranda 2001).

11.3.2 “Simple” Estimators

“Simple” sample-size estimators are those that do not require extensive knowledge or ex-
pertise in using statistical or modeling software, but require some mathematical calcula-
tions. Sample-size requirements can be estimated using a spreadsheet or pocker calculator.
Although these estimators are computationally simple, sample-size estimates are limited
to simple sample-size questions and may not provide realistic sample-size estimates, at
least relative to more sophisticated techniques. As such, these estimates should be used
with the understanding that they are rough estimates of sample-size requirements. One of
the most basic sample-size estimators was provided by Merritt et al. (1984):
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where 7 is the estimated sample size, #is the #distribution deviate, s is the sample variance,
X is the sample mean, and d is the desired difference expressed as a proportion (e.g., 25%
change in the mean or 0.25). The #distribution deviate is obtained by consulting #tables
in statistical textbooks and is chosen based on the degrees of freedom (# — 1). Because the
number of samples is unknown, a value of 1.96 (o = 0.05 or 95% probability) is commonly
used in the equation. However, this practice may underestimate the required number of
samples. Although an iterative process (i.e., solve for » with some zvalue, refit with another
t-value based on the estimate of #) is often used to address this issue (see Section 11.3.3),
using a #-value of 1.96 is probably adequate for those requiring only a rough approximation
of sample sizes. Using this equation, an estimate of the variance is obtained from a sample
(e.g., previous sampling) and sample size is estimated to ensure that a difference (4) can be
detected with some level of confidence (i.e., by manipulating the #distribution deviate).
This equation is analogous to the equation presented by Snedecor and Cochran (1989):
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where 7, 7, and 4 are as above and CV is the coefficient of variation (SD/mean). For
examples of the application of these equations, see Merritt et al. (1984) or Peterson and
Rabeni (1995).

Fisheries professionals are often interested in maintaining a high level of statistical
power (i.e., 1 — B; Peterman 1990; McAllister and Peterman 1992). A common formula
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used to estimate sample size with a consideration for statistical power is provided by Sne-

decor and Cochran (1989):
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where 7 and s are as above, 8 is the desired difference expressed as an actual value (difference
between mean 1 and mean 2), and z_and z, are values from the standard normal distribution
that account for the chance of false significance (z ) and the chance of falsely failing to reject
the null hypothesis (z,). For example, with a = 0.05, z, = 1.96 for a two-tailed test and 2, =
1.65 for a one-tailed test, if the desired statistical power (1 — 3) is 0.80, then 2, = 0.84.

11.3.3 Estimators Incorporating Statistical Power

The following estimators have been used extensively in fisheries research and management
and are similar to the estimator provided by Snedecor and Cochran (1989), discussed in
the previous section. These estimators are best implemented using spreadsheet programs
or preprogrammed statistical software. A common estimator is
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where 7 is the estimated sample size, r is the tdistribution deviate for a two-tailed test ata
given a, ¢, is the ~distribution deviate for the given level of statistical power, 5 is the sample
variance, and & is as above (Zar 1984). One of the complications of using this equation is
that estimates of 7 and ¢, are required, and estimating #,_and ¢, require an estimate of the
sample size (as previously discussed). Consequently, an iterative process is used to estimate
required samples sizes. Online statistical software provided by Simple Interactive Statistical
Analysis (SISA; www.quantitativeskills.com/sisa) makes computation of this equation rela-
tively straightforward and has been used to answer fisheries sample-size questions (e.g., Tate
et al. 2003; Paukert 2004). One of the benefits of using a spreadsheet or preprogrammed
software package is that different levels of statistical power and varying differences can be
rapidly simulated to provide a distribution of sample sizes. For instance, Tate et al. (2003)
estimated the number of samples required to detect a 25% and 50% change in CPUE of
largemouth bass at four levels of statistical power (i.e., 60%, 70%, 80%, and 90%). When
such an analysis is conducted, the resulting distribution of sample-size estimates not only
provides insight on the number of samples required to detect a difference at a given level
of statistical power, but the analysis also provides insight on what differences and levels of
statistical power might be expected with different sample sizes. Additional examples of this
analysis framework are provided in Simonson et al. (1994), Lester et al. (1996), Kreuger et
al. (1998), and Paukert (2004).

All of the sample-size estimators discussed thus far are appropriate for estimating sam-
ple-size requirements for most fisheries management questions. Most estimators assume




STATISTICAL ANALYSIS AND DATA MANAGEMENT 179

that sample sizes are equal among time periods or populations, variances are equal among
populations or time periods, samples are collected completely at random (i.e., samples are
completely independent), and data are normally distributed. Numerous scenarios can be
envisioned where variance changes among time periods, sample size varies among time
periods, or paired or fixed sites are sampled through time. In addition, many fisheries data
are not normally distributed (e.g., Hubert and Fabrizio 2007). Gerow (2007) recently
developed a sample-size estimator to help address some of these concerns:
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where 7 is the estimated sample size, Cis a variance inflation constant (standard deviation
of the mean/mean) that accounts for a non-Poisson distribution, ¢, is the #distribution
deviate for a one-tailed test given a, tﬁ is the r-distribution deviate for a one-tailed test
for the given level of statistical power, A, is the mean at time 0, A, is the mean at time 1,
and 7 is the correlation among samples between two time periods (= 0 if samples are not
paired). The equation allows estimation of the number of samples (i.e., equal or unequal
samples sizes) necessary for detecting an increase or decrease in a mean value and allows
for the incorporation of paired- or fixed-site sampling designs (see Gerow 2007 for a
detailed description and Quist et al. 2006 for an application). Although the estimaror
is relatively complex, a spreadsheet that allows for simple application of the equation is
available online (www.statsalive.com).

Many standard sampling protocols use a stratified sampling design to allocate effort
among different strata (e.g., littoral and pelagic habitat in lakes; pools, riffles, and runs
in streams). Although sample-size estimators for such designs may be highly complex, a
relatively simple estimator is provided by Scheaffer et al. (1996):
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where 7 is the estimated number of samples (across all strata), N.is the number of samples
in stratum 7, 0-;‘2 is the estimated variance from stratum 7, w, is the allocation fraction (i.e.,
allocation fraction of the final design), N is the total sample size, and D is equal to B*/4
(B is the desired number of measurements units from the sample mean; see Box 11.1 for
an example). Alternative forms of this sample-size estimator are available in Scheaffer et al.
(1996), as are various methods for allocating samples (e.g., proportional allocation, alloca-
tion based on cost, allocation based on variance).

11.3.4 Resampling Methods

"Thus far, we have focused on sample-size estimators used to detect a change in the mean
(e.g., mean CPUE) between time periods or populations. While such questions will
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Box 11.1 Example of estimating sample size using a “moderately complex” estimator and
allocating samples among strata.

Suppose that a biologist has pre-existing sampling data for a fish species sampled from
three different strata in a river system and wants to estimate the number of samples re-
quired to estimate catch per unit effort (CPUE) within 5% of the mean CPUE. A total
of 50 samples (i.e., V, = 10, IV, = 15, N, = 25) resulted in a mean CPUE estimate of
25 fish/net-night and strata variances as follows o =250=5,and ,’ = 50. In this

example, D would be 5*/4 [M 0. ’»9} Also, assume that the blOlOngt wants to allo-
cate the sampling effort proportional to the variance: stratum 1 = 31% of the samples,
stratum 2 = 6%, and stratum 3 = 63%. Sample size would then be estimated as

E(N.*xcs"']
W ) 2 (N xa}) o
7))
(50 >039)+[(10%25)+(15%5)+(25%30) |

76,418
2,550

=

"Thus, 30 samples would be required and would be allocated as V, = 30 x 0.31 = 9; IV, =
30 % 0.06 = 2;and NV, = 30 x 0.63 = 19. This example illustrates the value of preliminary
sampling, which can provide investigators with an idea of the variance they will encoun-
ter and allow an appropriate sample allocation.

remain important in fisheries management and research, other sample-size questions
are common. In particular, biologists are often interested in the number of samples
required to capture some proportion of the species present in a system with some level
of confidence (e.g., Lyons 1992; Angermeier and Smogor 1995; Walsh et al. 2002).
Questions such as these do not conform to standard sample-size equations. The most
common technique for estimating sample size in these situations is to use a resampling
simulation (e.g., Colwell and Coddington 1994). Resampling procedures are conceptu-
ally straightforward, but require a relatively high level of programming skill. Because
resampling methods are often tailored to specific sample-size questions and standard
formulae are not used, an example is provided in Box 11.2 to illustrate how a resam-
pling procedure might be used to estimate sample-size requirements. Although the
example is specific to species richness, it provides a framework that can be used to
answer a number of questions common to sampling fish populations (i.e., questions
focused on CPUE, length structure, condition, or other parameters). MacKenzie et
al. (2002) introduced the use of site occupancy models to estimate species richness, a
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Box 11.2 Example of using a resampling method for estimating species richness.

Suppose a biologist is interested in estimating the number of scine hauls needed to capture
all of the species present in a river segment (e.g., Lyons 1992; Patton et al. 2000; Walsh et
al. 2002). Using pre-existing data (e.g., 50 seine hauls from the system), replicate random
samples (e.g., 500 replicate samples or iterations) are drawn with varying numbers of seine
hauls (e.g., 1, 2, 3, 4...50 seine hauls). For a sample size of one, one seine haul is randomly
sampled 500 times and the metric of interest (e.g., species richness) is estimated from each
iceration. For a sample size of two, two seine hauls are randomly sampled (without replace-
ment) 500 times and species richness is estimated from each iteration (i.e., rotal number
of species across all transects), and so forth up to 50 seine hauls. Thus, for each number of
seine hauls there are 500 random samples, each with some number of collected fish species.
One method for estimating the required sample size is to develop a species “accumulation
curve” by plotting the cumulative number of species (e.g., minimum, mean, median, or
maximum number of species across the 500 iterations) against the number of seine hauls.
'The resulting curve will likely reach an asymptote and provide an estimate of the required
sample size. Other methods for developing species accumulation curves are provided in
Kwalk and Peterson (2007) and applications are provided in Lyons (1992), Angermeier and
Smogor (1995), and Walsh et al. (2002).
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Relationship between mean species richness (i.e., mean of 500 random samples for each
number of seine hauls) and the number of seine hauls. Based on this relationship, around 40
seine hauls should be sufficient to sample most of the species present.

(Box continues)
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Box 11.2 (continued)

An alternative method is to estimate the probability of sampling a specified pro-
portion of species. For example, if a total of 20 fish species is sampled in the 50 seine
hauls, a biologist may be interested in the number of samples required to capture 50%
(i.e., 10 species), 80% (i.c., 16 species), or 95% (i.e., 19 species) of the species present
in the study area. The probability of sampling 50% of the species can be estimated for
cach sample size (i.e., number of seine hauls) by tallying the number of times out of 500
that 10 or more species were sampled, and then dividing thac tally by 500. The prob-
abilities can then be plotted against the number of seine hauls and a regression model
(e.g., logistic regression model) can be fit to the probabilities. Fitting a regression model
helps “smooth” the relationship and allows one to estimate the probability of detecting
a defined percentage of the species present (e.g., how many samples are needed to have
a 95% probability of sampling 50% of the species; see Bailey and Gerow 2005 for a
detailed example).
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Relationship between the probability of sampling a specified number of species and the num-
ber of seine hauls.

method which has been used for estimating animal abundance and has gained popu-
larity in wildlife studies. Some software packages are available online that will conduct
portions of statistical simulations. One example of such software is FstimateS that can be
used to derive species accumulation curves (htep://viceroy.eeb.uconn.edu/EstimateS; see
Walsh et al. 2002 for an application). Another straightforward package for conducting
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resampling methods is PopTools (www.cse.csiro.au/poptools), which is a free add-in to
Microsoft (MS) Excel (Microsoft Corporation, Redmond, Washington).

11.3.5 Monitoring Spatial and Temporal Trends

The purpose of standardized sampling is to monitor whether the magnitude of some quanti-
ty (e.g., fish density, diversity, body condition, mortality) is increasing or decreasing through
time or space. While examining trends is critical for effective management and conserva-
tion, changes in a quantity over short temporal and spatial scales can lead to erroneous con-
clusions because these changes may be due to natural variation rather than representation
of a true trend. Consequently, investigating changes between a few sampling events often
requires more samples than for investigating a trend over long time periods (e.g., Larsen et
al. 2004). Sections 11.3.1 through 11.3.4 largely focus on sample-size requirements associ-
ated with detecting changes in two points in time or space. Sample-size questions focused
on long-term trends are somewhat different than those related to a comparing two values,
but progress has been made in the development of monitoring designs that allow scientists
to maximize statistical power by allocating samples over time and space based on the vari-
ance structure of initial samples. A detailed description of these techniques is beyond the
scope of this chapter but can be found in the published literature (e.g., Gerrodette 1987;
Gibbs et al. 1998; Urquhart et al. 1998; Larsen et al. 2004).

A number of software programs have been developed to assist scientists with sample-size
calculations. These programs generally focus on allocating samples in time and space while
maintaining a specified level of statistical power. A useful characteristic of these programs is
that they allow the user to evaluate the benefits and limitations of different designs by simu-
lating a variety of sampling scenarios. Popular programs include MONITOR (available
from the Illinois Natural History Survey, Clearinghouse for Ecology Software, Champaign;
http://nhsbig.inhs.uiuc.edu/wes/populations.html) and TRENDS (available from NOAA

Fisheries Service, Southwest Fisheries Science Center; http://swisc.noaa.gov).

11.4 DATA MANAGEMENT

According to the Data Management Association, data management refers to the “develop-
ment and execution of architectures, policies, and procedures that properly manage the
full dara lifecycle of an enterprise.” For our purposes, data management can be defined as
the mechanism by which data are handled, which involves the acquisition, storage, and
retrieval of information for later use by an individual or group of individuals. As we develop
standardized sampling methods, we are essentially predicting what assessments will be im-
portant in the future, and that, in turn, influences which data and how data are collected
(Schnute and Richards 1994). The same logic applies to data management, in that how data
are stored places constraints on how data can be retrieved and used in the future.

A database is simply a collection of related data or a data repository. Fisheries scientists
have been using databases since the first datum was recorded on a datasheet and placed in
a filing cabinet. Currently, data are stored in a variety of locations and formats, from pa-



184 CHAPTER I 1

per records that are only accessible at the local or regional level to electronic data thar are
accessible by a user across a large geographic area. Most fisheries sampling data collected
over long temporal and large spatial scales are stored in relational databases. Although
many biologists continue to store data in flat file formats, (i.e., where data are stored in
single, nonrelational tables or layers), such as MS Excel, this format is disadvantageous for
large data sets because file space is quickly consumed by redundant data. Data stored in
flat files can also be cumbersome to update, particularly if data are distributed in multiple
worksheets. Relational databases were first developed in 1970 and are simply data stored
in multiple tables that are linked or related by their content (Codd 1970). Therefore, a
large database stored in a single table in MS Excel can be separated into several related
tables that reduce data redundancy, data entry errors, and time spent entering data while,
at the same time, improving the ease of maintaining the database and increasing the ef-
ficiency of data retrieval. For instance, if time or effort was incorrectly entered into the
database depicted in Figure 11.1, many rows of data would need to be corrected in the fat
file structure (table on left) versus one line in the relational database structure (top right
table). The probability of making an error is reduced and database maintenance is more
efficient if databases are organized in a relational structure.

[n 1998, the first National Freshwater Fisheries Database Summit was held in San Di-
ego, California. Representatives from state, federal, and private organizations met to dis-
cuss issues related to the management and sharing of fisheries information (Loftus 1998).
Additional summits were organized in 2002 (Loftus and Faibisch 2003) and 2006. Some
of the data issues presented at these database summits are addressed here, particularly
those related to data standards and sharing.

11.4.1 Data Standards

Although some data are unique to a region or state, much of the information collected
on fisheries resources is common among agencies and geographic locations. These in-
clude date and time notations, taxonomic information, geographic data, weather data
(e.g., wind speed, temperature), habitat data (e.g., aquatic vegetation type, substrate
composition), and biological data (e.g., fish length and weight). To facilitate sharing of
information and standardization of data management procedures, agencies must adopt
data standards (Loftus 1998). Many standards have been created and adopted by federal
agencies, including the U.S. Fish and Wildlife Service (www.fws.gov/stand) and the U.S.
Environmental Protection Agency (www.epa.gov/edr). The creation of common species,
habitat, and geographic “look-up tables” and standard reporting forms increases the abil-
ity of integrating and sharing information across jurisdictional boundaries (Beard et al.
1998). Furthermore, the adoption of other data standards, including defined measure-
ment units and sampling techniques, can facilitate data sharing (Loftus 1998). Due to
their broad scope, many federal data standards (Table 11.2) have been adopted by state
and local agencies. Other data standards, such as measurement units, precision standards,
and equipment codes, have only been standardized at the state level. Even if standards
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Event Date Time Gear Effart
Date Tirne Gear Effort | Species | TL 1 1206 | 1000 | EFF e
172006 | 1000 EFF | 60 LMB 200 2 1506 | 915 EFF | 600
17206 | 1000 EFF 600 LMB 150
1/2/06 | 1000 EFF 00 LMB 516
Event | Species | TL
16506 | 915 EFF | GO0 LMB 240 g G e
1506 815 EFF (=] LB 180 1 LME 150
1506 | 915 EFE | 600 | LMB 265 1 LMB 518
2 LMB 240
156 | 915 EFF 600 LMB 300
2 LB 180
1506 | 915 EFF 00 LMB 452
2 LMB 265
1506 | 915 EFF | BO0 | LMB | 314 B LME W00
2 LB 452
2 LWB 34

Figure 11.1 Example of data stored in a flat file format (e.g., MS Excel spreadsheet; left table) and
the same data stored in a relational format (e.g., MS Access; right tables).

Table 11.2 Common data standards established by federal agencies that, if used by all levels,
could facilitate the sharing of fisheries information among agencies.

Dara type Standard code Source Web site
Taxonomic Taxonomic serial numbers Integrated Taxonomic wwwitis.gov
identifiers (TSN) Information System
Geographic Geographic Names U.S. Board on Geographic  geonames.usgs.gov
identifiers Information System Names
(GNIS)
Reach codes from EPA’s National Hydrography nhd.usgs.gov
Reach File Version 3 (RF3) Daraser (NHD)
Wetland and National Wetlands Inventory  U.S. Fish and Wildlife www.fws.gov/nwi
deepwater habitat Inventory (NWI) code Service
classifications lists
Drainage basins Hydrologic unit code (HUC)  U.S. Geological Survey water.usgs.gov/GIS/huc.html
National vegetation ~ National Vegetation and Federal Geographic Data htep://bology.usgs.gov/npsveg/
classificarions Information Standard Committee nves.heml

(NVCS) code lists
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are specific to a state agency, these standards should be clearly documented to facilitate
potential data sharing in the future.

11.4.2 Data Sharing

Most fisheries management issues are not restricted to a single system or species. With the
onset of ecosystem-based management and activities that involve cooperative efforts among
local, state, and federal agencies, it is important that databases are constructed in a manner
thar facilitates sharing of information (Hamm 1993; Schnute and Richards 1994; Beard et
al. 1998). Data stored on individual hard drives or in filing cabinets are no longer sufficient
to meet the needs of the public. For example, the Multistate Aquatic Resources Informa-
tion System (MARIS) was developed in 1994 and represents a collaborative effort between
multiple state and federal natural resource agencies (Beard et al. 1998; see Box 11.3). This
project is focused on providing access of state-collected freshwater fisheries data obrained
using various methodologies and stored in multiple formats via a single online location
(Beard et al. 1998).

Most fisheries data collected by state agencies are available to the public as defined
by the Freedom of Information Act. However, many professionals are concerned that
data can be misused or incorrectly analyzed and then used to argue inappropriately for
opposing views. Although states are obligated to make these data available to the public,
introducing a time lag in the data availability, creating readily accessible summary reports,
or providing a mechanism by which raw data are requested can be used to limit the re-
lease of sensitive data and monitor where information is distributed. For example, the
Western Pacific Fishery Information Network (WPACFIN) warehouses data collected by
multiple fishery agencies of Samoa, Hawaii, Guam, and the Northern Mariana Islands
(Hamm 1993). Requests for confidential or raw data from WPACFIN are submitted to
the donor agency and must be approved by that agency before being distributed. How-
ever, summary and nonconfidential data are available without restriction (Hamm 1993).
Undoubtedly, some data will be used incorrectly, but fisheries professionals should be
open to different interpretations of their data, including interpretations by members of
the public (Schnute and Richards 1994). Furthermore, providing information in a widely
used interface, such as through online sources, may enhance communication with the
public, and can be used as an educational tool and as a mechanism for increasing support
of management programs (Loftus 1998).

A primary component associated with sharing data is documentation and availability of
metadata. Metadata are data about the data or information describing a particular data set,
and they can include information such as location, species, methodology, precision, accu-
racy, and measured variables included in the database (Loftus 1998). Metadata can be used
to determine whether data are appropriate to meet a particular objective and to identify po-
tential constraints associated with a data set (Loftus 1998). Because the individual collecting
and entering data is rarely the same individual who conducts the data analysis, proper and
consistent documentation of metadata is critical (Gray et al. 2005). Furthermore, metadata
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Box 11.3 The Multistate Aquatic Resource Information System (MARIS): sharing data
across agency boundaries (Andrew J. Loftus and T. Douglas Beard, Jr.).

The Multistate Aquatic Resources Information System (MARIS) was initiated in the
1990s to facilitate data sharing across political boundaries. The initial goals of MARIS
were to reduce the duplication of data collection efforts, promote sharing of technical
expertise among member agencies, and better utilize the millions of dollars worth of
existing information annually collected by states (Beard et al. 1998).

The focus of MARIS is to allow agencies to share information related to the status
and trends of aquatic resources. Utilizing a single Web interface, users access data from
multiple fisheries management jurisdictions (currently 10 states) via a common query
structure. MARIS is designed to provide select elements that the contributing agencies
determine will serve the intended goal of the information system (currently, status and
trends information). The information provided in MARIS is not raw data, but rather
first- or second-order synthesis of data collected as part of fisheries sampling events.
MARIS is designed to serve data at the water body level but is flexible enough to allow
analysis of such data at larger geographic scales. Quantitative data elements reflecting
status and trends currently in the system include population estimates and catch per
unit effort.

MARIS is designed as a distributed transactional information system. Agencies thar
contribute data to the system house the subset of data that they will provide to MARIS
on their own internal agencies’ servers. The MARIS server periodically queries each
agency server to obtain the most current data available and creates a centralized cache of
data for increased efficiency and accessibility. Thus, agencies that collect the data retain
ultimate control over them, updates to the data can be conducted automarically by the
agency, and the most current available data in the state can be made available to MARIS.
This approach also allows states to maintain control over the availability of sensitive data
such as the location of threatened and endangered species.

An important feature shaping MARIS development is the adoption of existing data
standards to facilitate data sharing. While many states have developed their own internal
data standards, MARIS does not require them to change those standards. A series of
lookup tables will convert their data to the MARIS standard system. To the extent pos-
sible, MARIS is using existing standards, such as the integrated Taxonomic Information
System for species coding.

MARIS is an example of a current system that offers a mechanism through which
nearly any type of fisheries information can be shared. Fisheries professionals who desire
to exchange data between jurisdictions on a continuing basis should strongly consider
working with an existing effort, such as MARIS, to meet their information sharing needs.
The ability to integrate data across borders and to use these data for multiple purposes
increases the value of every data point collected.




188 CHAPTER 11

allow agencies to inventory their data (e.g., by location) and provide guidance on the proper
interpretation of data by other parties (Loftus 1998).

11.4.3 Database Platform

Ultimately, the primary focus of any fisheries database is the end user. Depending on the
nature and scope of the data, desktop applications such as MS Access can be used, but in
more complex situations (e.g., when multiple users must access the database from remote
locations), a full enterprise product such as MS SQL Server or Oracle (Oracle Corpora-
tion, Redwood Shores, California) is more appropriate. In most cases, the end user is
unaware of the database structure or program used; rather, they just need it to work for
their needs. Therefore, the database designer and manager are responsible for ensuring
that the database structure and application optimize performance while catering to the
needs of end users. Unfortunately, database personnel often lack the biological expertise
or background information about the data to make decisions on their own. Creating and
maintaining an open channel of communication with end users, or persons familiar with
the data and the needs of end users, is vital to the success of any database because objec-
tives can be clearly identified and pertinent applications can be developed. For instance,
questions such as what kinds of data are or will be collected, how the data will be used,
who will need access to the data, what kinds of reports will need to be generated, and
what queries are most useful are all important for ensuring that the database meets the
needs of end users. In some situations, appointing a liaison between the database devel-
opers and end users may be necessary. The liaison would be responsible for reviewing the
database during its development and ensuring that important questions are adequately
addressed so that the needs of the end users are met.

In addition to sound database design, the structure and layout of the user interface
should also be considered because the ease at which data can be entered and retrieved will
have a large impact on the future use of the database. If the interface is cumbersome, the
database will not be used and biologists will return to the “old way of doing things.” For
example, when entering fish lengths and weights from a standard sampling survey, biolo-
gists would rather not type or select from a drop-down menu the species name or code
for each measurement (Figure 11.2; top panel). Instead, a more time efficient solution is
to create a single drop-down menu for a species, under which multiple length and weight
records can be entered (Figure 11.2; bottom panel). The user interface can further be op-
timized by standardizing the layout, such as creating standard navigation tools, presenta-
tion of prompts and forms, and output reports.

After the database and associated applications have been designed, database personnel
must maintain and improve the database based on its performance and feedback from
end users. As part of this process, quality-control procedures and processes should be es-
tablished to maintain the integrity of the data. If water temperature was entered as 83°C
for a natural Florida lake, a quality-control procedure (e.g., an acceptable range of 0—40
for the temperature field) could alert the user that a data-entry error occurred. Many
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Figure 11.2 Design of a user interface that minimizes time associated with data entry.

quality-control parameters cannot be defined by database personnel, but rather by those
knowledgeable about the data. Therefore, communication between database personnel
and end users is critical throughout the postdevelopment period. Open dialogue is also
helpful when creating a user’s manual or troubleshooting guide that addresses common
database issues encountered by end users.

With this book and similar initiatives, the fisheries profession is becoming increas-
ingly integrated. Federal and state agencies are beginning to work together to create com-
mon standards and to provide a centralized online location where data can be accessed,
such as MARIS (see Box 11.3). The Internet has increased the accessibility of fisheries
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data to end users, who are often located over large geographic areas. Even so, security and
database accessibility are problematic, and these issues should be considered when using
this type of interface. As technology and access issues are addressed, agencies will con-
tinue the process of integrating data over larger and larger areas. A single online location
where fisheries data can be accessed for any state or federal agency is not only possible,
but is quickly becoming reality. Such efforts should greatly increase collaboration among
agencies and will enable biologists to address management problems that occur over Jarge
spatial and temporal scales.
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